Methane-rich saline attenuates ischemia/reperfusion injury of abdominal skin flaps in rats via regulating apoptosis level
نویسندگان
چکیده
BACKGROUND In plastic surgery, skin damage induced by ischemia/reperfusion (I/R) is a multifactorial process that often occurs. Methane gas has been reported to be a new therapeutic gas for attenuating I/R injury. In this study, we assessed the effects of methane-rich saline (MRS) in regulating apoptosis on skin flap I/R injury. METHODS Male Sprague-Dawley rats, 6-8 weeks old, were divided randomly into three groups: one sham surgery group (SH) and two surgery groups. After undergoing 6 h of I/R management of an abdominal skin flap, surgery groups were treated with physiological saline (I/R-P) or methane-rich saline (I/R-M). On the 3rd postoperative day, a laser Doppler flowmeter was used to measure flap blood supply, and hematoxylin and eosin (H&E) staining was used to observe morphological changes. TdT-mediated dUTP-X nick end labeling (TUNEL) staining was also used to observe early apoptosis and is presented as the percentage of TUNEL-positive cells. Moreover, pASK-1, pJNK, Bcl-2 and Bax were detected by immunohistochemical technology. Caspase-3 activity was also measured to evaluate the effects of MRS. RESULTS Compared to the I/R-P group, the flaps in the I/R-M group presented a larger survival area and better blood perfusion with less inflammatory infiltration and cell apoptosis, a higher expression of Bcl-2, a lower expression of pASK-1, pJNK and Bax, and a lower caspase-3 activity. CONCLUSION According to the results, MRS attenuated I/R injury by regulating apoptosis and has the potential to be applied as a new therapy for improving skin flap survival.
منابع مشابه
Hydrogen-rich saline ameliorates hippocampal neuron apoptosis through up-regulating the expression of cystathionine β-synthase (CBS) after cerebral ischemia- reperfusion in rats
Objective(s): This study aimed to evaluate the potential role of hydrogen in rats after cerebral ischemic/reperfusion (I/R) injury. Materials and Methods: The experimental samples were composed of sham group, model group of rats that received middle cerebral artery occlusion (MCAO) for 2 hr followed by reperfusion for 24 hr, and the hydr...
متن کاملGallic acid protects the liver in rats against injuries induced by transient ischemia-reperfusion through regulating microRNAs expressions
Objective(s): Gallic acid (GA) is a highly effective antioxidant, which its beneficial effects are well known, but its impact on expression of microRNAs (miRs) following hepatic ischemia-reperfusion (I/R) is not well recognized. Therefore, the current research was designed to specify the beneficial effect of GA on miRs (122 and 34a), liver functional tests, and histopathological alterations bey...
متن کاملHydrogen sulfide treatment protects against renal ischemia-reperfusion injury via induction of heat shock proteins in rats
Objective(s): Hydrogen sulfide (H2S) attenuates ischemia-reperfusion injury (IRI) in different organs. However, its mechanism of action in renal IRI remains unclear. The present study investigated the hypothesis that H2S attenuates renal IRI via the induction of heat shock proteins (HSPs).Materials and Methods: Adult Wistar rats were subjected to unilateral renal ischemia for 45 min followed by...
متن کاملProtective Effects of Nucleobinding-2 After Cerebral Ischemia Via Modulating Bcl-2/Bax Ratio and Reducing Glial Fibrillary Acid Protein Expression
Introduction: Nucleobinding-2 (NUCB2) or nesfatin-1, a newly identified anorexigenic peptide, has antioxidant, anti-inflammatory, and anti-apoptotic properties. Brain ischemia-reperfusion induces irreversible damages, especially in the hippocampus area. However, the therapeutic effects of NUCB2 have not been well investigated in cerebral ischemia. This study was designed for the first time to i...
متن کاملHydrogen-Rich Saline Promotes the Recovery of Renal Function after Ischemia/Reperfusion Injury in Rats via Anti-apoptosis and Anti-inflammation
PURPOSE Hydrogen is a proven novel antioxidant that selectively reduces hydroxyl radicals. In this study, we investigated the effects of hydrogen-rich saline solution on the prevention of renal injury induced by ischemia/reperfusion (I/R) and on renal function recovery. METHODS A rat model of renal I/R injury was induced by 45 min occlusion of the left renal pedicle, followed by 108 h reperfu...
متن کامل